Magnetic tunnel junction beyond memory – from logic to neuromorphic computing

WANJUN PARK

DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY

Magnetic Tunnel Junctions (MTJs)

• Structure

- Function
 - Representation of non-volatile binary state according to magnetization configuration

• Advantage

- ✓ Scalability
- ✓ Low energy
- ✓ High speed
- ✓ High endurance
- $\checkmark\,$ CMOS compatibility

• High density memory

1 Transistor + 1 MTJ

1GB STT-MRAM, Everspin (2016)

Content

" To find computing functions beyond memory from MTJ for integrated circuits"

- Construction of 2-input MTJ
- MTJ Logic gates
- Neuromorphic computing
 - Artificial MTJ neuron
 - Artificial MTJ synapse
 - Artificial Neurotransmission system

Basic configuration of MTJ

• Single input configuration for switching to achieve the binary state

- \checkmark Methods for magnetization reversal of free layer
 - Switching variable 1: magnetic field switching (current induced Ampere field)

 Switching variable 2: Spin-transfer torque (STT) switching (spin polarized current)

Two-input configuration of MTJ

• Motivation for multiple input extension

- " Increase of functional flexibility"
- Reduction of switching stress by breakup of biases
- Increase of switching bias margin

• Physical variables for MTJ switching

- Ampere field-induce switching
- Spin-transfer torque (STT) switching
- Thermally assisted switching (TAS)
- Voltage-assisted switching (ME effect)
- Spin-orbit torque (SOT) switching

Multiple input is available for MTJ

 \rightarrow Our choice: STT & Ampere field for two switching inputs

 \rightarrow Sharing integration methods developed for MRAM

Switching characteristics of 2-input MTJ

 MTJs for switching characteristics due to mixed inputs of STT & Ampere field

Interpretation of 2-input switching

•

Case for switching to be P state Energy $0 < H_a < H_c$ Er $f = B_b + B_b + B_c$ Er $F = B_b - B_b + B_c$ Er $F = B_{b0} - E_b^*$ Magnetization state

"Magnetic field assisted STT switching"

Energy due to Ampere field $(H_{ext} = H_a)$: $E_b^* = E_b(H_{ext}) \left(1 - \frac{a_J}{a_c} \right) = E_0 \left(1 - \frac{H_{ext}}{H_s} \right)^{\beta} \left(1 - \frac{a_J}{a_c} \right)$ • H_s : Switching field • E_0 : Energy barrier at zero magnetic field • a_J : Spin transfer torque

- a_c : Critical spin transfer torque
- β = 2

NAND/NOR representation

• Definition of binary states for each input

Logic value	Input 1 (V)	Input 2 (H)	MTJ OUT		
1	V _H	H _H	R _{AP}		
0	VL	HL	R _P		

Assignment of input values to the STT input terminal

All logical representation founded in MTJ

• 7 Boolean logic representations from possible 12 binary inputs of voltage biases for the STT switching

No.	Initial		Input set			Input (V, H), Output (R)			Logic function		
	State	VL	V _H	HL	Н _Н	(V _L ,H _L)	(V_H, H_L)	(V_L, H_H)	(V _H ,H _H)	$R_{AP} = 1, R_{P} = 0$	$R_{AP} = 0, R_{P} = 1$
1	- R _{AP}	0.2	0.3	–5 Oe 5 O	5 Oe	R _{AP}	R _{AP}	R _{AP}	R _P	NAND	AND
2		0.3	0.4			R _{AP}	R _P	R _P	R _P	NOR	OR
3		0.2	0.4			R _{AP}	R _P	R _{AP}	R _P	NOT V	V
4		0.2	0.2			R _{AP}	R _{AP}	R _{AP}	R _{AP}	TRUE	FALSE
5		0.3	0.3			R _{AP}	R _{AP}	R _P	R _P	NOT H	н
6		0.3	0.3			R _P	R _P	R _P	R _P	FALSE	TRUE
7	- R _P	-0.25	-0.35			R _P	R _{AP}	R _P	R _P	V NIMP H	V IMP H
8		-0.35	-0.45			R _{AP}	R _{AP}	R _P	R _{AP}	H IMP V	H NIMP V
9		-0.25	-0.45			R _P	R _{AP}	R _P	R _{AP}	V NIMP H	V IMP H
10		-0.25	-0.25			R _P	R _P	R _P	R _P	FALSE	TRUE
11		-0.35	-0.35			R _{AP}	R _{AP}	R _P	R _P	NOT H	Н
12		-0.45	-0.45			R _{AP}	R _{AP}	R _{AP}	R _{AP}	TRUE	FALSE

MTJ Logic gate

- Logic gate for digital computing
 - Cascading computing

Full schematic of a logic gate

14 Boolean functions computed in MTJ logic gate

XOR/XNOR MTJ Logic gate

- XOR/XNOR gate could be completed by using "cascading computing"

• Conclusively, we have two types of MTJ logic gate which allow any digital computing

Reconfigurable Logic

• Reconfigurability: further advantage of MTJ logic

Practical example for reconfigurable Logic

• Carry-out function with reconfigurable logic

Neurotransmission – spike signal carrying information

Neural coding

Neural (Biological) coding

To find carrier for information according to "Strength and frequency "of input stimulus

Telegraphic switching

Telegraphic switching by mixed effect of STT & Ampere field in 2-inpt MTJ

M. Pufall et al., Phys. Rev. B (2004)

Total Energy $(E_M + E_{STT}) \sim E_S$ \rightarrow Toggling between AP and P state Stochastic characteristic

 \rightarrow Switching probability P(H, I) is defined as the carried information

Rate coding

• Construction of neural coding : Rate coding

Artificial neuron function

• MTJ-based neuron architecture representing the rate coding

Neurotransmission

Neuron system connected by "Synapse"

(Spike-rate-dependent plasticity)

- Spike(=Action potential) generation (when the signal is above threshold)
- Neural coding
 - Information is coded through spike train
 - ➤ Rate coding

- Synaptic weight: plasticity for connection strength
- Weight modulation
 - Potentiation / Depression
 - Spike-timing-dependent plasticity (STDP)

Memristive character of MTJ

MTJ-based artificial synapse

• Construction of input signal for "Spike-timing dependent plasticity"

<Biological STDP>

Artificial neurotransmission

• Neurotransmission system

• Artificial neurotransmission system

- MTJs are commonly used for neural and synaptic functions
- Learning rule of "Spike-rate dependent plasticity" is possibly applied

SRDP learning rule

Summary

- MTJ was modified with two inputs for switching to achieve functional flexibility.
- Then we found various computing functions for digital to neuromorphic computing.